SHM - XX

YARD NO: 155

TRIM & STABILITY BOOKLET

DRG NO: SHM/MPT/28 REV. A

OWNER

SHM SHIP CARE DARUKHANA, MAZGAON, Mumbai.

SHM SHIP CARE GHODBUNDER Mumbai.

PROGRAM USED HYDROSTATICS, LOADING & DAMAGE PROGRAM SUITE VERSION 10.08.15 FV 18.13.12.4

* See remarks in red on page no. 3, 4, 9, 23, 25 and 27

DEVELOPED BY
WOLFSON UNIT M.T.I.A
SOUTHAMPTON UNIVERSITY
ENGLAND

ARCHETYPE

10, Ground Floor, Anand Tower I, Airport Road, Chicalim, Goa - 403711 RI 94469

RINA Korea Engineerin Centre
Approvato
Approved

In conformità ai vigenti Regolamenti del RII (In compliance with RINA Rules in force)

N. PUCD0000006600

24 AUG 2016

TOTAL 33 SHEETS

INDEX

1)	Cover Page	Page No.
2)	Index	2
3)	General Particulars	3
4)	Information to Master	4
5)	Metric Conversion Table	5
6)	Notes on Use of Free Surface Moments	6
7)	Worked out example of Stability Calculation	7-8
8)	Example Showing cross curves of Stability	
9)	Use of Cross Curves of Stability	10
10)	Draft Marks Location	11
11)	General Arrangement	12
12)	Tank Capacity Plan & Table	13
13)	Fresh Water Tank Capacity Chart	14
14)	Fuel Oil Tank Capacity Chart	15
15)	Hydrostatic & Cross Curve Data	16-18
16)	Table of Down flooding angle v/s Displacement	19
17)	Loading Condition Data	
	a) Condition 1: Lightship, Condition	20 - 21
	b) Condition 2: Load Departure Condition	22 - 23
	c) Condition 3: Load Arrival Condition	24 – 25
	d) Condition 3: Light Departure Condition	26 – 27
18)	Inclining Experiment Report	28 - 33

GENERAL PARTICULARS

01. Vessel's Name : SHM - XX

02. Official Number : MOR - IV - 00603

03. Port of Registry : MUMBAI

04. Owner's Name and Address : SHM SHIP CARE

DARUKHANA, MAZGAON

Mumbai.

05. Builder's Name and Address : SHM SHIP CARE

GHODBUNDER,

Mumbai.

06. Yard No. : 155

07. Year of Built : 2016

08. Principal Dimensions

a) Length O.A. : 15.370 m.

b) Breadth moulded : 03.770 m.

c) Depth moulded : 91.940 m.

d) Draft (loaded) : 00.508 m.

09. Displacement (Loaded) : 14.326 tonnes

10. Deadweight : 2.406 tonnes

11. Main Engines : 2 Nos. Cummins

Model QSB6.7, each developing

305 BHP at 2600 RPM

12. Gear Boxes : 2 Nos. ZF 286A

with 1.962:1 Ratio.

13. Gross Tonnage : 25 Tons

14. Net Tonnage : 08 Tons

15. Sign Convension : Longitudinal Position (LCG, LCB, LCF etc)

are measured from midship 230mm ford of (Fr No. 08) Aft of Midship is considered –ve and

forward +ve

All vertical measurements (VCG, VCB etc)

are measured from baseline.

TCG are measured wrt Centerline Port -ve Stbd +ve. Trim Aft + ve Trim Ford - ve

16. Classification Society : RINA, C*HULL ■MACH, special service;

sheltered area

INFORMATION TO MASTER

A] A stamped approved copy of this Booklet must be kept on board the vessel at all times, be complete, legible, and readily available for use. If this Booklet should be lost, immediately inform the Owners or the Statutory Authority.

B] This stability information shows that the ship complies with definite intact stability requirements in all designed conditions and gives the data deemed necessary for the calculation and evaluation of stability to the master in order that he can take suitable measures for securing the stability in any service condition.

C] GENERAL PRECAUTIONS AGAINST CAPSIZING

- a) Compliance with the required minimum stability criteria indicated in the following pages, does not ensure immunity against capsizing, regardless of the circumstances, or absolve the Master from his responsibilities. Masters should therefore, exercise prudence and good seamanship, having regard to the season of the year, weather forecasts and navigational zone, and should take appropriate action as to the speed and course warranted by the prevailing circumstances.
- b) Care should be taken to ensure that the cargo, allocated to the ship is capable of being stowed, so that compliance with the stability criteria can be achieved. If necessary, the amount of cargo should be limited to the extent that ballast weight may be required.
- c) Before a voyage commences, care should be taken to ensure that the cargo and sizeable pieces of equipment have been properly stowed and lashed, so as to minimize the possibility of both longitudinal and lateral shifting while at sea, under the effect of acceleration caused by rolling and pitching..
- d) In determining the sequence of tanks from which fuel oil and fresh water is to be consumed and those into which water ballast may be admitted during the voyage the Master must ensure, prior to departure, that the required minimum stability criteria will be maintained throughtout the voyage after making due allowance for free surface effect as may be appropriate.
- e) Masters should note that stability can be adversely affected by such influences as beam wind on ships with large windage area, icing on top sides and deck cargo, water trapped on deck and in deck cargo, rolling characteristics and following seas.
- f) Acess hatches, loors on on upper and raised decks are to be secured closed at all time when the vessel is underway.

D] STATUTORY REQUIREMENTS:

No.	Criterion	Reqd. for monohu ll
*1	Where IZ Max Lop to 15 VAries unbar IZ Learne Lip to 15 Deg	Sommad
21	WHETHER MAXIBETHER HE'S TO SOLARGE TURNED CITY OF AN MAXIGEN	\$0:06510.001(301-0 max)mrde1
31	WillerLOZMax.larsb drabone Area linder 02 come at 0000g2	SU.059 Marco
4	GZ erter 30° +040 vol downstooding 1/440°.	Stoles Arrad
51	Minimum GZ at 30 to mode!	102m
61	Min anglé of Max GZV	161-
7	Minimum GM.	0.35 m

(*) For ships of length less than 24m, only the criterion mentioned below is to be complied with. -The initial metacentric heigh(GM0) is not less than 0.35 m

METRIC CONVERSIONS TABLE

METRIC EQUIVALENTS

THE USE OF S.I (SYSTEM INTERNATIONALS) UNITS IS STRONGLY RECOMMENDED.

MULTIPLY BY BELOW	TO CONVERT FROM	TO OBTAIN	
0.03937	Millimetres	Inches	25.400
0.3937	Centimetres	Inches	2.5400
3.2808	Metres	Feet	0.3048
2.2046	Kilogrammes	Pounds	0.45359
0.0009842	Kilogrammes	Tons (2240lbs)	1016.047
0.9842	Metric Tons (i.e.Tonnes of 1000 Kilos)	Tons (2240lbs)	1.016
2.4998	Metric Tons Per Centimetre Of Immersion	Tons Per Inch (Immersion)	0.4000
8.2014	Moment To Change Trim One Centimetre (Tonne Metre Units)	Moment To Change Trim One Inch (Foot Ton Unit)	0.122
187.9767	Metre Radians	Feet Degrees	0.0053
-	TO OBTAIN	TO OBTAIN TO CONVERT FROM	

RELATION BETWEEN WEIGHT AND VOLUME

1000 cubic milliimeter = 1 cubic centimetre

1 cubic metre = 35.316 Cubic feet

1 cubic foot = 0.0283 Cubic metres

1 cubic centimeter of freshwater (S.G. 1.0) = 1 gramme

1000 cubic centimeters of freshwaters (S.G. 1.0) = 1 kilogram (1000 grammes)

1 cubic metre of freshwater (S.G. 1.0) = 1 Tonne (1000 Kilos)

1 cubic metre of saltwater(S.G.1.025) = 1.025 Tonnes

1 tonne of saltwater (S.G. 1.025) = 0.975 Cubic metres

NOTES ON USE OF FREE SURFACE MOMENTS

Provided a tank is completely filled with liquid, no movement of the liquid is possible and the effect on the ship's stability is precisely the same as if the tank contained solid materials.

Immediately a quantity of liquid is withdrawn from the tank, the situation changes completely and the stability of the ship is adversely affected by what is known as the "free surface effect". This adverse effect on the stability is referred to as a "loss in G.M." or as a "virtual rise in V.C.G." and is calculated as follows:

N. B.: The "Free Surface Effects" of a proportion of all oil, fuel, fresh water and service tanks should be taken into account in both the Arrival and Departure Conditions.

Free Surface Moment (tonnes- metre) of the liquid

$$\begin{cases}
Free Surface Moment \\
at Sp. Gr. 1.0 \\
(tonnes - metre)
\end{cases} x \begin{cases}
Sp. Gr. of \\
liquid
\end{cases}$$

NOTE:

- In any condition where ballast has been taken, care must be taken to ensure that the tanks are fully pressed up to eliminate unnecessary Free Surface Effects.
- Bunkers should be drawn from one respective tank so that other tanks are maintained in the pressed up condition.
- 3) Slack must not be kept in all tanks. It must be collected in one tank.

WORKED OUT EXAMPLE OF STABILITY CALCULATION

Calculations in this Booklet are preformed by using program Hydrostatics & stability program suite Version 10.08.15 fv 18.13.12.4, Developed by Wolfson unit m.t.i.a Southampton university, England. Below mentioned loading sheet provides a simplified means of determining available GM and draft at various conditions of vessel loading. This sheet is largely self explanatory. After totaling various items of vessel loading as indicated by the loading tables shown, the vessel's draft and available (corrected) GM may be determined in a simple, direct and accurate manner.

LIGHT DEPARTURE CONDITION

Α	В	С	D	E	F	G
		LCG AT 230MM Ford of FR.				
LOCATION/	WEIGHT	No. 8	LONGL Moment	VCG@BASE	VERTL Moment	F.S.M
COMPARTMENT/TANKS	IN TONNES	IN MTRS	IN T-M	IN MTRS	IN T-M	IN T-M
FUEL OIL TANK	1.156	-5.473	-6.33	0.678	0.78	0.090
FRESH WATER	0.250	0.135	0.03	0.512	0.13	0.040
8 NOS. PASSENGERS	0.000	0.000	0.00	0.000	0.00	0.000
4 NOS. CREW	0.300	0.487	0.15	2.790	0.84	0.000
STORES	0.100	1.500	0.15	0.560	0.06	0.000
LIGHTSHIP	11.920	-2.094	-24.96	1.519	18.11	0.000
	Σ Weights	D ÷ B	Σ LONGL. Mom.	F÷B	Σ VERTL. Mom.	Σ' F.S.M
	13.726	-2.255	▲ -30 . 96	1.451	19.91	0.130

FROM HYDROSTATICS REPORT FOR CORRESPONDING DISPLACEMENT

DRAFT AT MIDSHIP	0.519	Mtrs.	TRIM LEVER = LCG - LCB	0.837	Mtrs.
LCB FROM MIDSHIP	-1.418	Mtrs.	TRIM MOMENT =	11.494	T- M
LCF FROM MIDSHIP	-1.145	Mtrs.	DISPL. X TRIM LEVER	11.434	1-101
LCG FROM MIDSHIP	-2.255	Mtrs.	TRIM BY AFT/FORD ON DARFT	0.000	Natur
MCT1CM	0.48	T- M	MARKS=TRIM MOMENT / (MCTIcm x 100)	0.239	Mtrs.
KMT	3.24	Mtrs.	TRIM AFT AT AP= {(6.185+ LCF) x	0.093	Mtrs.
VCG	1 451	Mtrs.	TRIM }/12.968	0.093	wus.
GMT Solid = KMT - VCG	1.789	Mtrs.	TRIM FORD AT FP = {(6.783 - LCF) x TRIM AFT /12.968	0.146	Mtrs.
F.S. Corm. = Σ F.S.M \div Σ W eights	0.009	Mtrs.	DRAFT AFT AT AP= DRAFT LCF + TRIM AFT	0.612	Mtrs.
G.M.T Fluid = G .M.T Solid - F.S. Corm.	1.780	Mtrs.	DRAFT FORD AT FP = DRAFT LCF - TRIM FORD	0.373	Mtrs.

Note:

- a) If LCB is aft of LCG trim by ford & LCB is ford of LCG trim by aftb) If Trim is by aft then trim aft to be added to draught aft and minus to draught ford and vis a versa
- c) Distance Between Draft mark = 12.968 mtrs
- d) VCG to be in safe zone of maximum permissible KG V/s displacement curve
- e) The condition shown above is worked out using even keel Hydrostatic data. If any computed condition has trim Aft or Ford, the condition should be re-worked or using Hydrostatic data computed at the trim nearest to the one obtained

INSTRUCTION FOR USE OF LOADING SHEET

• Enter the Deadweight in Tonnes of liquids, Stores and crew carried in the various locations, compartments and tanks in colomn A. This breaks down the loading of the ship into the appropriate Zones.

- Enter Corresponding LCG & VCG W.R.T 230mm ford of Fr. No. 08 in column C & E respectively. Aft of 230mm ford of Fr No. 08 is -ve and Ford of 230mm ford of Fr. No. 08 is +ve
- Calculated Vertical Moments (ie Weight x VCG) & Longl. Moment (Weight x LCG)
- Add the entries in column B,D, F & G to obtain the DISPLACEMENT / Vertical Moment / Longl. Moment/F.S.Moment

Now that the Displacement is established, the draft & hydrostatic data from Hydrostatic Report for corresponding Displacement can be entered.

- GMT solid, GMT fliud, Trim Lever, Trim Moment, Trim by aft/ford and draught aft & ford to calculate as shown in the loading sheet
- The tabular GM in Loading sheet includes an allowance for slack tank free surface for each type of consumable liquid.

A GM available less than the GM required indicates insufficient stability.

DEFINITIONS, SYMBOLS AND SIGN CONVENTIONS

Midship at	230 mm Ford Fr. No. 08
Frame Spacing	Refer General Arrangement

L	ist	of	S	νm	bo.	ls
ட	ıοι	O1	· ·	y 111	UU.	LO.

Symbol	Unit	Description
LOA	M	Length Overall
LWL	M	Length Waterline
B (Mld)	M	Moulded Breadth
D (Mld)	M	Moulded Depth
TPCm	T	Tonnes per 1 Cm immersion
MCTCm	T-M	Moment to change Trim by 1 Cm
Draught Aft	M	Draught at Fr. No. 15 WRT to Base Line
Draught Mid	M	Draught WRT to Base line at Midship for Hydrostatics
Draught Fwd	M	Draught at F. P. WRT to Base line
VCG, KG	M	Vertical Center of Gravity above Base line before correcting for free surface.
KGc	M	Vertical Center of Gravity above Base line after correcting for free surface.
KB	M	Vertical Center of Buoyancy above Base line
KMt	M	Transverse Metacenter above Base line
GoMt (Fluid)	M	Transverse Metacenter above KGc
GZ	M	Righting Arm
FSM	T-M	Free Surface Moment
Sp.Gr.		Specific Gravity

EXAMPLE SHOWING USE OF CROSS CURVES

The Purpose of Cross Cruves of Stability is to enble the Statical Stability cruves to be drawn for the ship in the sailing condition.

For example assuming the displacement of the ship to be 13.726 tonnes

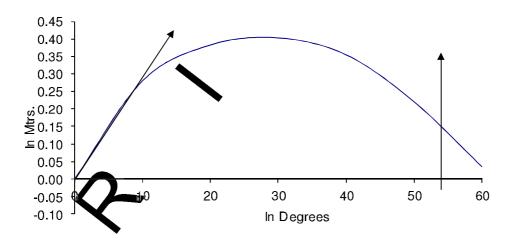
The corrected Vertical Centre of Gravity "KGc" above Base line to be 1.460 mtrs

Procedure to obtain 'GZ' levers is as follows:-

Obtain 'KN' values for the displacement of 13.726 Tonnes for various angle of Heel from 0° to 80° at 10° interval.

Righting Lever $GZ = KN - KGcSin \theta$

Where KN is Cross Curve ordinates in metres


KGc is Centre of Gravity above base line corrected for the free surface effect in metres

And ' θ ' is Angle of Heel in degrees

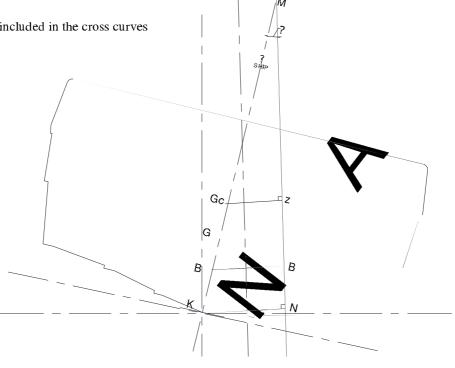
By Plotting GZ levers against angle of heel ' θ ' the statical stability curves for the ship for any displacement can be plotted.

The table below illustrates the above calculation

IN DEGREES	0	10	20	30	40	50	60
SIN O	0.000	0.174	0.342	0.500	0.643	0.766	0.866
KG SIN Θ	0.000	0.254	0.499	0.730	0.939	1.118	1.264
KN	0.000	0.534	0.882	1.083	1.293	1.339	1.300
$GZ = KN-KGc SIN\Theta$	0.000	0.280	0.383	0.403	0.354	0.221	0.036

Θf – Downflooding Angle

No.	Criterion	Reqd. for monohull
12	Whered 2 Max lub 16 16 Aver linder 62 clude lub 10 18 Deg.	solormied
1	WHENGZ Max Loet Ween His Notation are a linker of clinician Max V&Z1	/20:085110:001(301-01 1112(4)411:12(4)
3	When az Max Lango or labble Ardarundar Ga Currerat 300 bgr	4 autominad
4-	GZ bread DVO 401 of Committeed in 12402	20103 numa
5-	Minimum GZ-A+30 olukole:	10.2m
4	Minvangle-OfficeZV	152
7	Minimum GM.	0.35 m


USE OF CROSS CURVES OF STABILITY

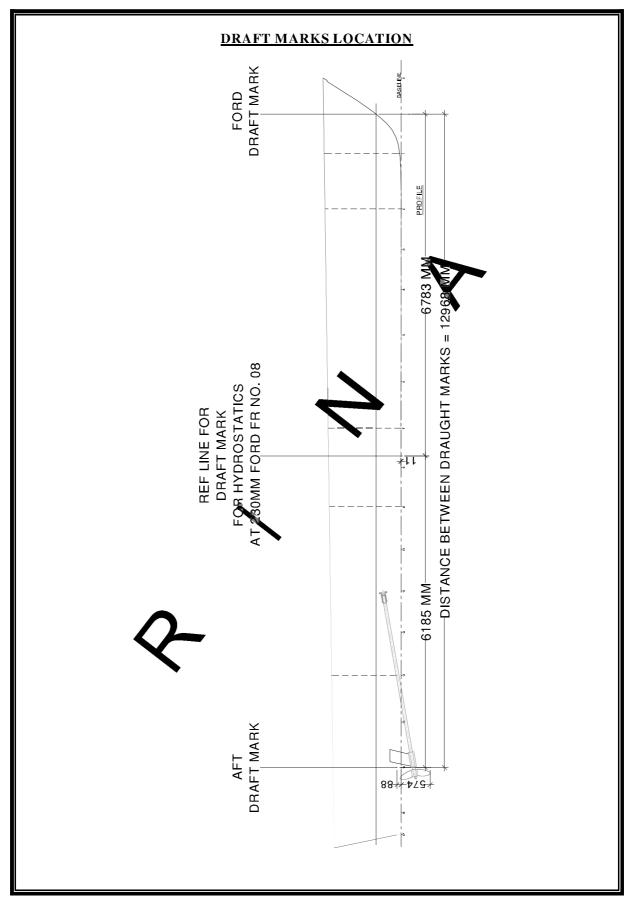
The Cross curves of stability have been calculated for centre of gravity w.r.t to baseline. In any condition, Where the centre of gravity is KG and free Surface Effects GGc, the righting lever.

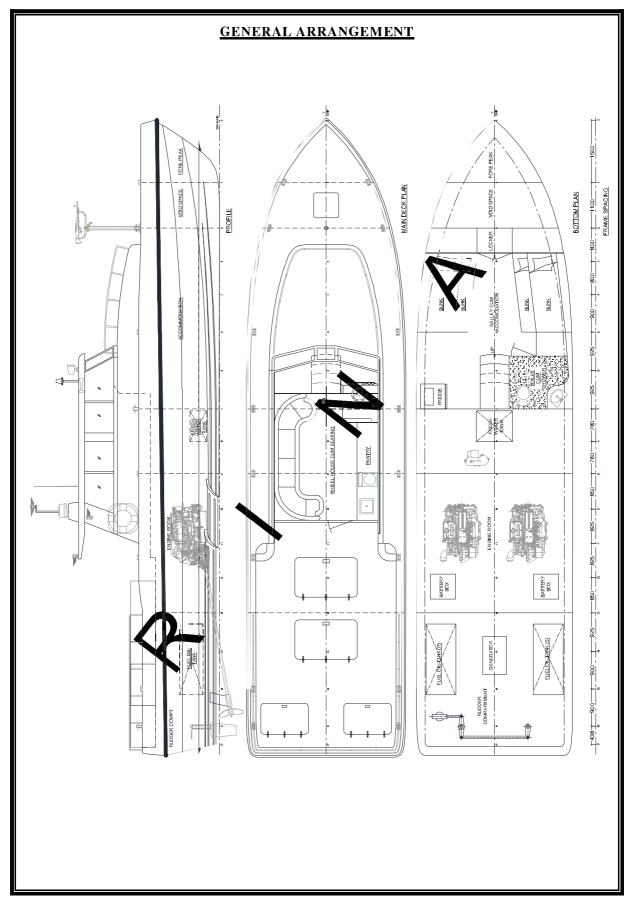
 $GZ = KN - KGc Sin \theta$, Where

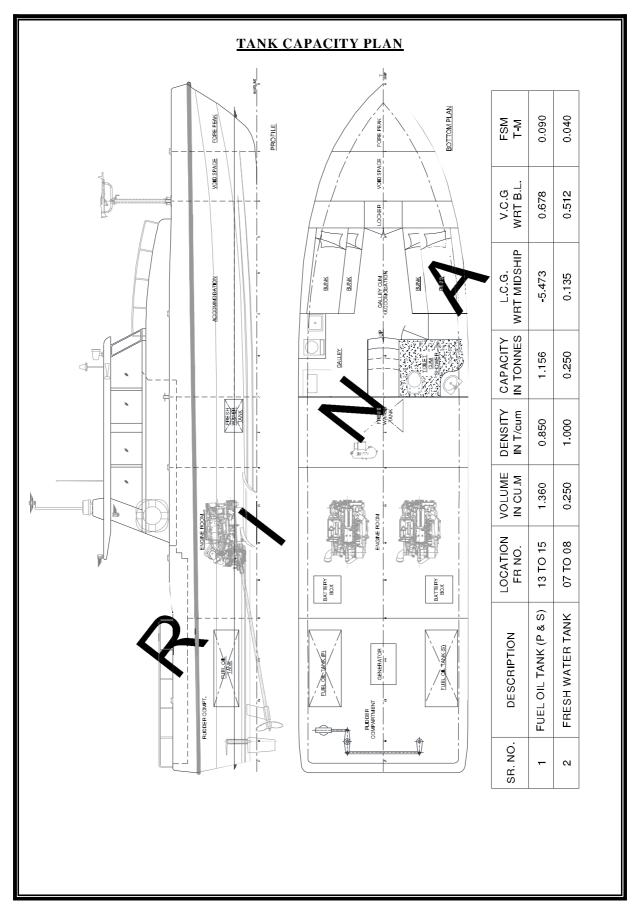
KGc = KG + GGc

No Erections included in the cross curves

<u>Note</u>:-


- KN is obtained from the Cross Curves for corresponding Displacement in tonnes.
 KGc is vertical centre of gravity in the condition computed.


VOLUME USE FOR KN COMPUTATIONS



Frame Spacing Frame Spacing

Refer General Arrangement

	RESH WATER TAN FR. NO. 07 TO UNDING BY 5.6 MM F	08 (CENTER)	
Sounding in Cms	Capacity in.Ltrs.	Sounding in Cms	Capacity in.Ltrs.
0.0	0	26.0	163
1.0	6	27.0	170
2.0	13	28.0	176
3.0	19	29.0	182
4.0	25	30.0	189
5.0	31	31.0	195
6.0	38	32.0	201
7.0	44	33.0	207
8.0	50	34.0	214
9.0	57	35.0	220
10.0	63	316.0	226
11.0	69	37.0	233
12.0	75	38.0	239
13.0	82	39.0	245
14.0	88	TK FULL	250
15.0	94		
16.0	101		
17.0	107		
18.0	113		
19.0	119		
20.0	126		
21.0	132		
22.0	138		
23.0	145		
24.0	151		
25.0	157		
	L.C.G. W.R.T MI	DSHIP = 0.135 M	
	V.C.G. W.R.T BAS	SELINE = 0.512 M	

FUEL OIL TANK CAPACITY CHART FR. NO. 13 TO 15 (PORT SHOWN STBD SIMILAR) DEDUCT SOUNDING BY 13.1 MM FOR EVERY 100MM TRIM BY AFT						
Sounding in Cms	Capacity in.Ltrs.	Sounding in Cms	Capacity in.Ltrs.	Sounding in Cms	Capacity in.Ltrs.	
0.0	0	26.0	315	52.0	630	
1.0	12	27.0	327	53.0	642	
2.0	24	28.0	339	54.0	654	
3.0	36	29.0	351	55.0	666	
4.0	48	30.0	364	TK FULL	680	
5.0	61	31.0	376			
6.0	73	32.0	388			
7.0	85	33.0	400			
8.0	97	34.0	412			
9.0	109	35.0	424			
10.0	121	36.0	486			
11.0	133	37.0	448			
12.0	145	38.0	460			
13.0	158	39.0	473			
14.0	170	40.0	485			
15.0	182	41.0	497			
16.0	194	42.0	509			
17.0	206	43.0	521			
18.0	218	44.0	533			
19.0	230	45.0	545			
20.0	242	46.0	557			
21.0	254	47.0	570			
22.0	267	48.0	582			
23.0	279	49.0	594			
24.0	291	50.0	606			
25.0	303	51.0	618			

L.C.G. W.R.T MIDSHIP = -5.473 M V.C.G. W.R.T BASELINE = 0.678 M

Hydrostatics Report

SHM - XX

Ship Particulars

Waterline Length 14.390 metres
Waterline Beam 3.434 metres
Top of Keel 0.000 metres

CP and CM referred to Section 230mm FORD OF FR NO.8: X=0 metres

Specific Gravity of Water 1.0250

Mean Shell Thickness 0.0000 metres

Longitudinal Datum 230mm FORD OF FR NO.8 (7.523MTRS FROM TRANSOM)

Vertical Datum BASELINE Trim Length 12.968 metres Draught Marks Name X metres Z metres Aft Marks FR. NO. 15 -6.185 0.000 Mid Marks Midships 0.000 0.000 Fwd Marks STEM 6.783 0.000

Trim Betwee	n Marks 0.	.000 metres						
Draught at Mid Marks	Moulded Draught	Moulded Displacement D	Full Displacement	LCB	LCF	Moulded VCB	Immersion	WSA
metres	metres	tonnes	tonnes	metres	metres	metres	tonnes/cm	metres ²
0.300	0.300	4.641	4.641	-1.549	-1.570	0.209	0.346	35.97
0.320	0.320	5.356	5.356	-1.54	-1.528	0.223	0.368	38.37
0.340	0.340	6.113	6.113	-1.544	-1.508	0.236	0.388	40.53
0.360	0.360	6.919	6.919	-1.545	-1.515	0.249	0.409	42.87
0.380	0.380	7.745	7.745	-1.537	-1.433	0.262	0.416	43.98
0.400	0.400	8.583	8.583	-1.524	-1.373	0.275	0.422	44.94
0.420	0.420	9.432	9.432	-1.508	-1.317	0.287	0.427	45.83
0.440	0.440	10.290	10.290	-1.490	-1.270	0.299	0.431	46.64
0.460	0.460	11.156	1 .156	-1.471	-1.235	0.311	0.434	47.38
0.480	0.480	12.028	12.028	-1.453	-1.204	0.322	0.437	48.09
0.500	0.500	12.906	12.906	-1.435	-1.167	0.334	0.441	48.85
0.520	0.520	13.791	13.791	-1.417	-1.144	0.345	0.443	49.52
0.540	0.540	14.680	14.680	-1.400	-1.120	0.356	0.446	50.19
0.560	0.560	15.576	15.576	-1.382	-1.086	0.367	0.449	50.94
0.580	0.580	16.476	16.476	-1.366	-1.072	0.378	0.451	51.56
0.600	0.600	_17.380	17.380	-1.350	-1.058	0.389	0.453	52.18
0.620	0.620	18.289	18.289	-1.335	-1.038	0.400	0.455	52.85
0.640	0.640	19.201	19.201	-1.321	-1.027	0.411	0.457	53.45
0.660	0.660	20.116	20.116	-1.307	-1.016	0.422	0.459	54.05
0.680	0.680	21.035	21.035	-1.294	-1.005	0.433	0.460	54.66
0.700	0.700	21.958	21.958	-1.282	-0.984	0.444	0.463	55.33
0.720	0.720	22.885	22.885	-1.269	-0.976	0.454	0.464	55.92
0.740	0.740	23.815	23.815	-1.258	-0.968	0.465	0.466	56.52
0.760	0.760	24.747	24.747	-1.247	-0.961	0.476	0.467	57.11
0.780	0.780	25.683	25.683	-1.236	-0.953	0.487	0.469	57.70
0.800	0.800	26.622	26.622	-1.226	-0.940	0.497	0.470	58.33
Trim Betwee								
Draught at Mid Marks metres		Γ KML	I MCT tonnes- metres/cm	CB		СР	СМ	cw
0.300	5.119		0.313	0.305	C	0.694	0.440	0.682

0.320	5.226	82.774	0.342	0.330	0.697	0.474	0.727
0.340	5.249	78.406	0.370	0.355	0.704	0.504	0.767
0.360	5.305	74.670	0.398	0.379	0.715	0.531	0.807
0.380	4.921	69.255	0.414	0.402	0.725	0.555	0.822
0.400	4.577	64.322	0.426	0.424	0.735	0.577	0.833
0.420	4.272	60.177	0.438	0.443	0.744	0.596	0.843
0.440	4.003	56.482	0.448	0.462	0.752	0.614	0.851
0.460	3.766	53.100	0.457	0.479	0.759	0.631	0.858
0.480	3.559	50.092	0.465	0.495	0.766	0.646	0.864
0.500	3.388	47.585	0.474	0.510	0.772	0.660	0.871
0.520	3.230	45.150	0.480	0.524	0.778	0.673	0.875
0.540	3.092	42.991	0.487	0.537	0.783	0.686	0.880
0.560	2.976	41.243	0.495	0.549	0.788	0.697	0.887
0.580	2.864	39.350	0.500	0.561	0.793	0.708	0.891
0.600	2.764	37.645	0.505	0.572	0.797	0.718	0.894
0.620	2.677	36.209	0.511	0.582	0.801	0.727	0.899
0.640	2.596	34.755	0.515	0.592	0.805	0.736	0.902
0.660	2.524	33.428	0.519	0.602	0.809	0.744	0.905
0.680	2.458	32.212	0.523	0.611	0.812	0.752	0.909
0.700	2.400	31.250	0.529	0.619	0.815	0.760	0.913
0.720	2.346	30.171	0.532	0.628	0.818	0.767	0.916
0.740	2.296	29.174	0.536	<u>A</u> .635	0.821	0.774	0.919
0.760	2.251	28.249	0.539	Ô <u>n6</u> 48	0.824	0.780	0.922
0.780	2.210	27.388	0.542	<u> </u>	0.826	0.787	0.925
0.800	2.173	26.649	0.547	0 657	0.829	0.793	0.929

Free Trimming Cross Curve Data

SHM - XX

Specific Gravity of Water 1.0250

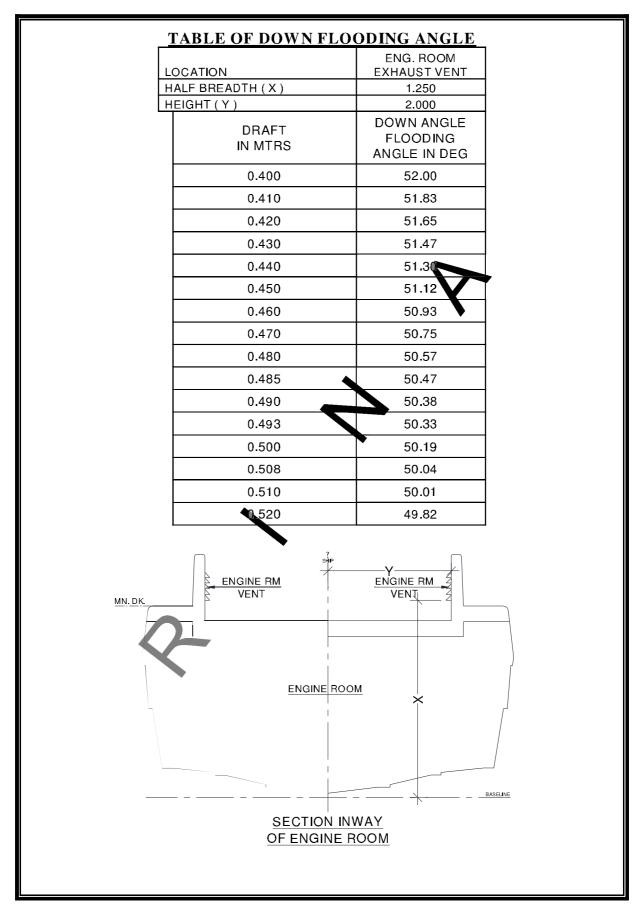
Mean Shell Thickness 0.0000 metres

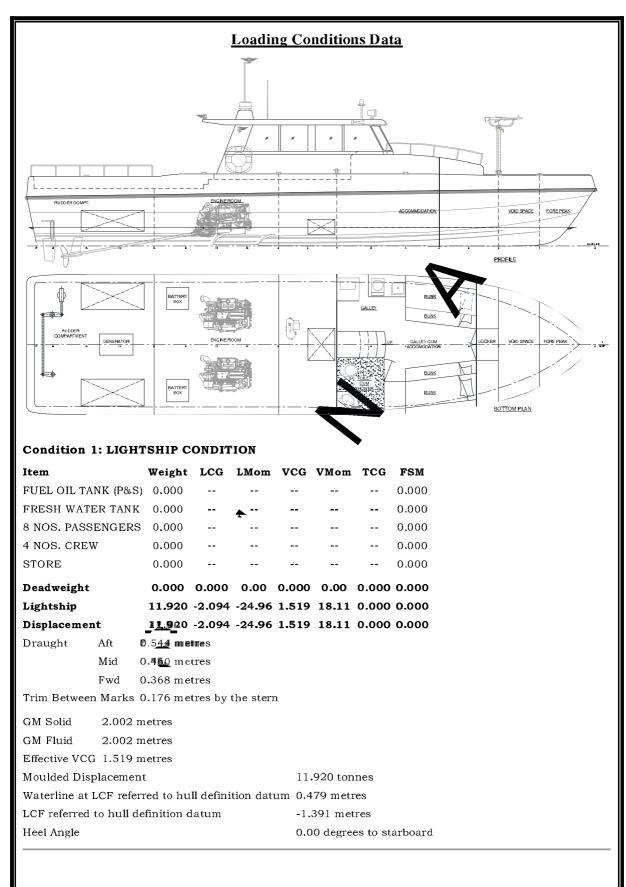
Longitudinal Datum 230mm FORD OF FR NO.8 (7.523MTRS FROM TRANSOM)

 Vertical Datum
 BASELINE

 Trim Length
 12.968 metres

 Draught Marks
 Name
 X metres Z metres


 Aft Marks
 FR. NO. 15
 -6.185
 0.000


 Mid Marks
 Midships
 0.000
 0.000

 Fwd Marks
 STEM
 6.783
 0.000

Trim Between Marks 0.000 metres

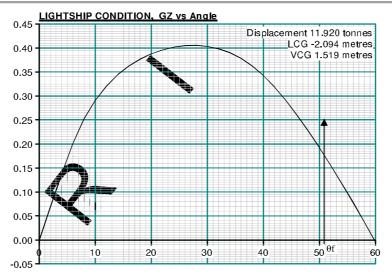
Displacement	nt Heel Angle - Degrees / KN - metres									
tonnes	0.00	10.00	20.00	30.00	40.00	50.00	60. 00	70.00	80.00	90.00
4.000	0.000	0.697	1.097	1.325	1.420	1.436	1.407	1.306	1.145	0.940
5.000	0.000	0.676	1.055	1.294	1.407	1.444	1.411	1.301	1.136	0.928
6.000	0.000	0.656	1.022	1.265	1.395	1.446	1.406	1.293	1.127	0.919
7.000	0.000	0.638	0.995	1.239	1.384	1.441	1.397	1.284	1.118	0.911
8.000	0.000	0.621	0.971	1.216	1.374	1.430	1.386	1.273	1.109	0.905
9.000	0.000	0.605	0.952	1.197	1.36	1.417	1.373	1.261	1.100	0.899
10.000	0.000	0.590	0.935	1.180	1.354	1.402	1.358	1.250	1.091	0.894
11.000	0.000	0.575	0.919	1.166	1.839	1.586	1.343	1.237	1.082	0.890
12.000	0.000	0.560	0.905	1.153	1.323	1.370	1.328	1.224	1.074	0.886
13.000	0.000	0.545	0.891	1.141	1.305	1.352	1.311	1.212	1.066	0.882
14.000	0.000	0.530	0.879	1.131	1.288	1.334	1.295	1.199	1.057	0.879
15.000	0.000	0.515	0.868	1.121	1.270	1.315	1.279	1.186	1.049	0.875
16.000	0.000	0.501	0.857	1.110	1.252	1.297	1.263	1.174	1.040	0.871
17.000	0.000	0.486	0.847	1.099	1.235	1.277	1.247	1.161	1.032	0.868
18.000	0.000	0.473	0.837	1.088	1.218	1.258	1.231	1.149	1.024	0.864
19.000	0.000	0.460	0.827	1.076	1.200	1.238	1.215	1.137	1.016	0.861
20.000	0.000	0.447	0.818	1.064	1.183	1.220	1.198	1.124	1.008	0.858
21.000	0.000	0.435	0.809	1.050	1.166	1.202	1.182	1.112	1.000	0.855
22.000	0.000	0.425	0.801	1.037	1.149	1.184	1.166	1.100	0.993	0.852
23.000	0.000	0.415	0.793	1.023	1.131	1.167	1.150	1.088	0.985	0.849
24.000	0.000	<u>0.</u> 406	0.784	1.009	1.114	1.150	1.134	1.076	0.977	0.846
25.000	0.000	0.398	0.775	0.994	1.097	1.133	1.119	1.064	0.970	0.843
26.000	0.000	<u>0.</u> 391	0.766	0.980	1.080	1.116	1.104	1.052	0.962	0.841
27.000	0.000	0.384	0.756	0.965	1.063	1.100	1.090	1.040	0.955	0.838
28.000	0.000	0.378	0.746	0.949	1.046	1.084	1.076	1.029	0.948	0.835
29.000	0.000	0.372	0.735	0.933	1.029	1.068	1.062	1.018	0.941	0.833
30.000	0.000	0.367	0.723	0.917	1.012	1.052	1.048	1.007	0.934	0.830

Free Trimming Stability Data

LIGHTSHIP CONDITION

Displacement11.920 tonnesLongitudinal Centre of Gravity-2.094 metresVertical Centre of Gravity1.519 metresTransverse Centre of Gravity0.000 metresEquilibrium GM2.002 metres

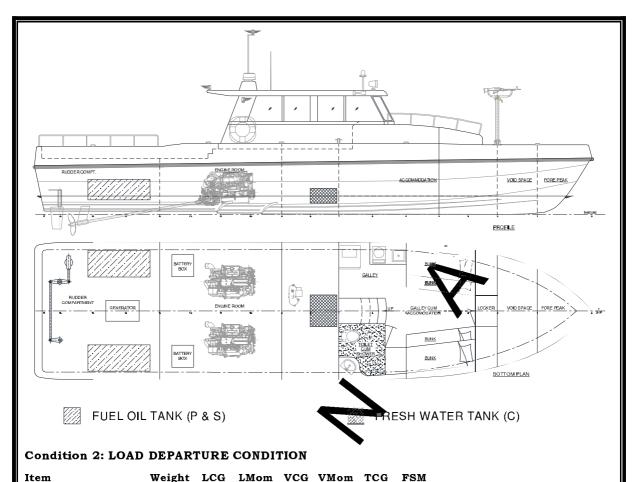
Equilibrium Heel Angle 0.000 degrees to stbd


Equilibrium Draught 0.460 metres

Equilibrium Trim Between Marks 0.176 metres by the stern

Angle of Vanishing Stability59.8 degreesMaximum GZ0.406 metresMaximum GZ Angle27.5 degrees

	_			-		
Heel Angle degrees	GZ	Lever KN metres	Waterline metres		VCB metres	GZ Curve Area metres.rad
2	0.000	0.000	0.460	0.156	0.005	0.000
0.0	0.000	0.000	0.460	0.176	0.325	0.000
10.0	0.291	0.555	0.446	0.205	0.366	0.028
20.0	0.388	0.907	0.390	0.220	0.446	0.089
30.0	0.403	1.163	0.313	0.208	0.549	0.1 59
40.0	0.342	1.319	0.225	0.223	0.652	0 <u>.2</u> 25
50.0	0.192	1.356	0.140	0.294	0.723	2 73
60.0	-0.004	1.311	0.074	0.376	0.773	*



DOWN ANGLE FLOODING, θf

50.93 Degrees

No.	Criterion	Reqd. for monohull	Actual
1	When GZ Max. at 30° or above Area under GZ curve at 30Deg	> 0.055 m.rad	0.159
2	GZ area 30° TO 40° or down flooding if < 40°.	> 0.03 m.rad	0.066
3	Minimum GZ at 30° or more.	≥ 0.2 m	0.403
4	Min. angle of max GZ	15°	27.5
5	Minimum GM.	0.15 m	2.002

Item	weight	LCG	LMOm	VCG	v m om	TCG	FSM
FUEL OIL TANK (P&S)	1.156	-5.473	-6.33	0.678	0.78	0.000	0.090
FRESH WATER TANK	0.250	0.135	6. 03	0.512	0.13	0.000	0.040
8 NOS. PASSENGERS	0.600	-0.920	-0.35	2.790	1.67	0.000	0.000
4 NOS. CREW	0.300	0.487	0.15	2.790	0.84	0.000	0.000
STORE	0.100	1.500	0.15	0.560	0.06	0.000	0.000
Deadweight	2.406	-2.722	-6.55	1.446	3.48	0.000	0.130
Lightship	11.920	-2.094	-24.96	1.519	18.11	0.000	0.000
Displacement	1 <u>4.3</u> 26	-2.199	-31.51	1.507	21.59	0.000	0.130

Draught Aft 0.629 metres

Mid 0.50 metres Fwd 0.375 metres

Trim Between Marks 0.254 metres by the stern

GM Solid 1.580 metres GM Fluid 1.571 metres Effective VCG 1.516 metres

Moulded Displacement 14.326 tonnes
Waterline at LCF referred to hull definition datum 0.534 metres
LCF referred to hull definition datum -1.356 metres

Heel Angle 0.00 degrees to starboard

Free Trimming Stability Data

LOAD DEPARTURE CONDITION

Displacement14.326 tonnesLongitudinal Centre of Gravity-2.199 metresVertical Centre of Gravity1.516 metresTransverse Centre of Gravity0.000 metresEquilibrium GM1.571 metres

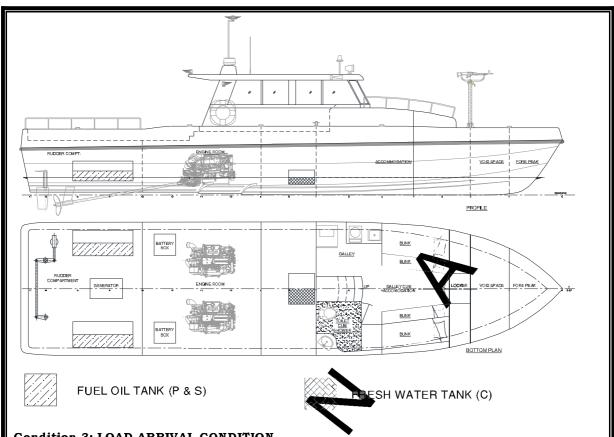
Equilibrium Heel Angle 0.000 degrees to stbd

Equilibrium Draught 0.508 metres

Equilibrium Trim Between Marks 0.254 metres by the stern

Angle of Vanishing Stability57.6 degreesMaximum GZ0.375 metresMaximum GZ Angle27.3 degrees

	_			-		
Heel Angle	GZ	Lever KN metres	Waterline		VCB	GZ Curve Area
degrees	metres	metres	metres	metres	metres	metres.rad
0.0	0.000	0.000	0.508	0.254	0.359	0.000
10.0	0.252	0.515	0.499	0.282	0.398	0.023
20.0	0.357	0.875	0.449	0.311	0.478	0.078
30.0	0.371	1.129	0.378	0.320	0.576	1 43
40.0	0.296	1.270	0.302	0.373	0.665	0.209
50.0	0.143	1.304	0.233	0.472	0.727	0 <u>.2</u> 41
60.0	-0.049	1.264	0.180	0.579	0.771	<u></u>



LOAD DEPARTURE CONDITION, GZ vs Angle 0.40 Displacement 14.326 tonnes LCG -2.199 metres 0.35 VCG 1.516 metres 0.30 0.25 0.20 0.15 0.10 0.05 0.00 θf 50 20 40 10 30 -0.05

DOWN ANGLE FLOODING, θf

50.04 Degrees

No.	Criterion	Reqd. for monohull	Actual
1	WHETLAZ MAX. PATSO OF SUBVO AND A LINDER GZLEURING ST SODEGZ	\$10.059 minuel	ans
21	GZ12102 TO 40 TO 40 TO HOODING IN 40 !!	> 0x03 mind	0.0591
3-	Minimum 62 At 307 or motes	20.2m	0.3912
#	Nin anglé oi mat azi	151	21/1
5	Minimum GM.	0.35 m	1.571

Condition 3: LOAD ARRIVAL CONDITION

Item	Weight	LCG	LMom	VCG	VMom	TCG	FSM	
FUEL OIL TANK (P&S)	0.116	-5.473	-0.63	0.678	0.08	0.000	0.090	
FRESH WATER TANK	0.025	0.135	€0.00	0.512	0.01	0.000	0.040	
8 NOS. PASSENGERS	0.600	-0.920	-0.55	2.790	1.67	0.000	0.000	
4 NOS. CREW	0.300	0.487	0.15	2.790	0.84	0.000	0.000	
STORE	0.010	1.500	0.01	0.560	0.01	0.000	0.000	
Deadweight	1.051	-0.971	-1.02	2.482	2.61	0.000	0.130	
Lightship	11.920	-2.094	-24.96	1.519	18.11	0.000	0.000	

12.971 -2.003 -25.98 1.597 20.71 0.000 0.130 Displacement

Draught 0.5<u>65</u> metres Aft

Mid 0.485 metres

Fwd 0.398 metres

Trim Between Marks 0.167 metres by the stern

GM Solid 1.729 metres GM Fluid 1.719 metres Effective VCG 1.607 metres

Moulded Displacement 12.971 tonnes Waterline at LCF referred to hull definition datum 0.503 metres LCF referred to hull definition datum -1.324 metres

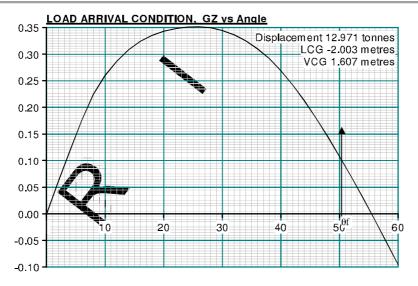
Heel Angle 0.00 degrees to starboard

Free Trimming Stability Data

LOAD ARRIVAL CONDITION

Displacement12.971 tonnesLongitudinal Centre of Gravity-2.003 metresVertical Centre of Gravity1.607 metresTransverse Centre of Gravity0.000 metresEquilibrium GM1.719 metres

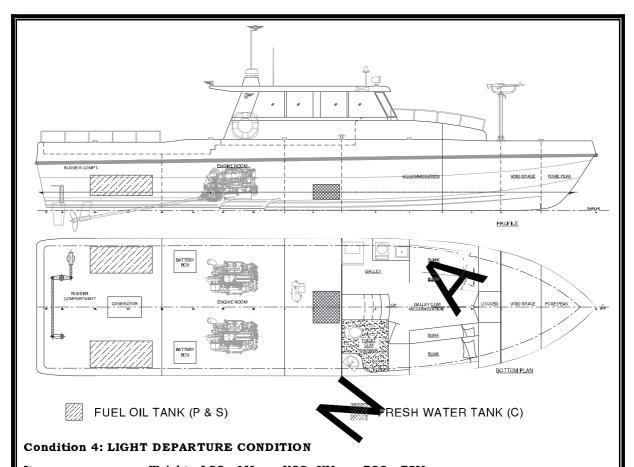
Equilibrium Heel Angle 0.000 degrees to stbd


Equilibrium Draught 0.485 metres

Equilibrium Trim Between Marks 0.167 metres by the stern

Angle of Vanishing Stability55.4 degrees to stbd55.4 degrees to portMaximum GZ0.352 metres to stbd0.352 metres to port

Maximum GZ Angle 25.7 degrees to stbd 25.7 degrees to point


	_			-		_
Heel Angle	GZ	KN	Waterline		VCB	GZ Curve Area
degrees	metres	metres	metres	metres	metres	metres.rad
0.0	0.000	0.000	0.485	0.167	0.338	0.000
10.0	0.261	0.540	0.474	0.194	0.378	0.025
20.0	0.343	0.893	0.422	0.209	0.458	0.079
30.0	0.345	1.148	0.347	0.200	0.559	1 40
40.0	0.269	1.302	0.265	0.216	0.658	0 <u>1</u> 95
50.0	0.108	1.339	0.189	0.287	0.727	<u>0</u> 229
60.0	-0.096	1.296	0.129	0.368	0.775	

DOWN ANGLE FLOODING, θf

50.47 Degrees

No.	Criterion	Reqd. for monohull	Actual
12	WHET GZMAXIATION OF A BOVE A REAZING OF GZ LEAVE AT SO DOGI	\$ 0.055 m.Aad	2140
2	GZVaroars VII O 40 Volldorinata oding 11 440 1	20103 M.Mad	0.0551
3	Number GZ-at 30 Vol More)	₹0.2ml	0 √345√
4	thin angle of make 2	15℃	25.7
5	Minimum GM.	0.35 m	1.719

Item	Weight	LCG	LMom	VCG	VMom	TCG	FSM
FUEL OIL TANK (P&S)	1.156	-5.473	-6.33	0.678	0.78	0.000	0.090
FRESH WATER TANK	0.250	0.135	€0.03	0.512	0.13	0.000	0.040
8 NOS. PASSENGERS	0.000						0.000
4 NOS. CREW	0.300	0.487	0.15	2.790	0.84	0.000	0.000
STORE	0.100	1.500	0.15	0.560	0.06	0.000	0.000
Deadweight	1.806	-3.321	-6.00	0.999	1.80	0.000	0.130
Lightship	11.920	-2.094	-24.96	1.519	18.11	0.000	0.000
Displacement	1 <u>3.7</u> 26	-2.255	-30.96	1.451	19.91	0.000	0.130

Draught Aft 0.617 metres

Mid 0.493 metres
Fwd 0.357 metres

Trim Between Marks 0.260 metres by the stern

GM Solid 1.721 metres
GM Fluid 1.711 metres
Effective VCG 1.460 metres

Moulded Displacement 13.726 tonnes

Waterline at LCF referred to hull definition datum 0.521 metres

LCF referred to hull definition datum -1.393 metres

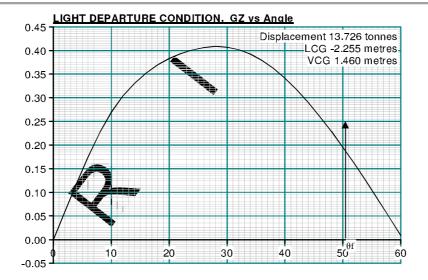
Heel Angle 0.00 degrees to starboard

Free Trimming Stability Data

LIGHT DEPARTURE CONDITION

Displacement13.726 tonnesLongitudinal Centre of Gravity-2.255 metresVertical Centre of Gravity1.460 metresTransverse Centre of Gravity0.000 metresEquilibrium GM1.711 metres

Equilibrium Heel Angle 0.000 degrees to stbd


Equilibrium Draught 0.493 metres

Equilibrium Trim Between Marks 0.260 metres by the stern

Angle of Vanishing Stability60.4 degrees to stbd60.4 degrees to portMaximum GZ0.409 metres to stbd0.409 metres to port

Maximum GZ Angle 28.1 degrees to stbd 28.1 degrees to point

Heel Angle degrees	Righting GZ metres	Lever KN metres	Waterline metres		VCB metres	GZ Curve Area metres.rad
0.0	0.000	0.000	0.493	0.260	0.352	0.000
10.0	0.270	0.523	0.483	0.291	0.392	0.025
20.0	0.383	0.882	0.432	0.319	0.472	0.084
30.0	0.407	1.137	0.359	0.326	0.571	1 54
40.0	0.341	1.280	0.279	0.377	0.662	0 <u>.2</u> 20
50.0	0.195	1.314	0.205	0.478	0.725	268
60.0	0.008	1.272	0.149	0.585	0.770	0.286

DOWN ANGLE FLOODING, θf

50.33 Degrees

No.	Criterion	Reqd. for monohull	Actual
1	WHOMAZ Maxi-attocor above Ardalunder Gziclinle at 80 Bag/	9 0.059 m. rber	0.154
2	dz energy to 40 of down thooding 1140%	20103 no 1601	1.060-
3-	Minimular GZ At 30 lof-more.	Mam	1.407-
4	Minrangetoinaxoz	151	28.1
5	Minimum GM.	0.35 m	1.711

SHM - XX

YARD NO. 155

INCLINING EXPERIMENT RÉPORT

DRG NO: SHM/MPT/27 DRG NO: REV. A

SHM SHIPCARE DARUKHANA, MAZGAON, MUMBAI

BUILDER

MM SHIP CARE GHODBUNDER, Mumbai

* See remarks in red on page 2, 4 and 5

RINA

PROGRAM USED YDROSTATICS & STABILITY PROGRAM SUITE Approvato VERSION 06.07.05 FV 16.6

> DEVELOPED BY WOLFSON UNIT M.T.I.A SOUTHAMPTON UNIVERSITY ENGLAND

Approved N. PUCD0000006418 28 JUL 2016

TOTAL 05 SHEETS

INCLINING EXPERIMENT REPORT

Vessel : SHM - XX

Yard No : 155

Place : SHM Shipcare Shipyard,

Ghodbunder - Mumbai.

Date : 27th Apr. '16

Time : 1200 HRS TO 1300 HRS

Total no. of persons on board : 05 nos.

Weather : Settled, Clear Visibility.

Wind : Calm
Restraining Line : Slack

State of the Vessel : All bilges dry.

Specific gravity : 1.020
Temperature : 30 deg C

Draft Midship (Fr No

Test witnessed by : 1) Mr. Haneydict. A

RINA Surveyor.

2) Mr.Rajesh Belgaonkar

Main dimension : 15.37 m x 3.77 m x 1.94 m

SOUNDINGS OF TANKS

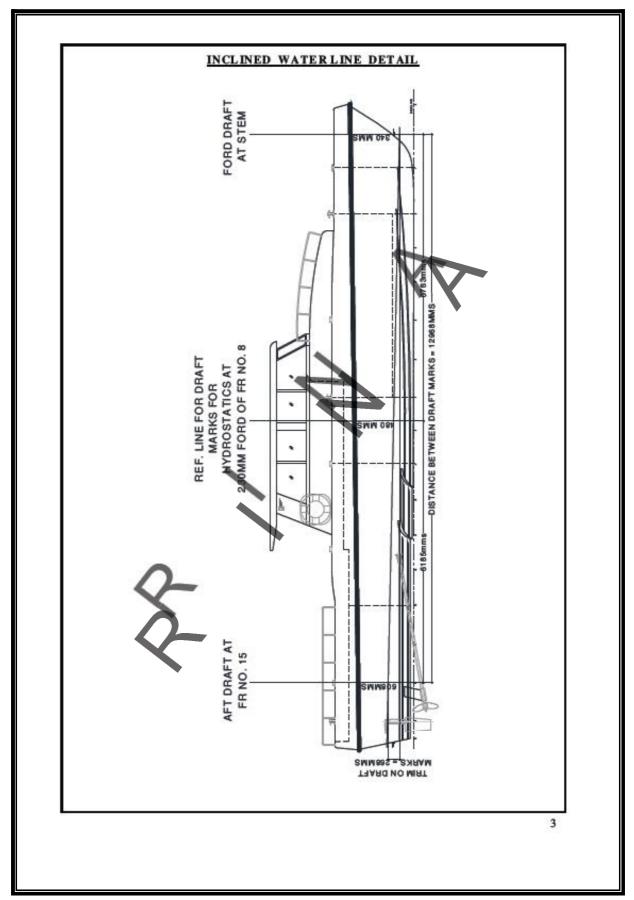
No. Description Side Location Sounding Weight F.S.M.mt

(Fr.Nos) (m) (t) (t-m)

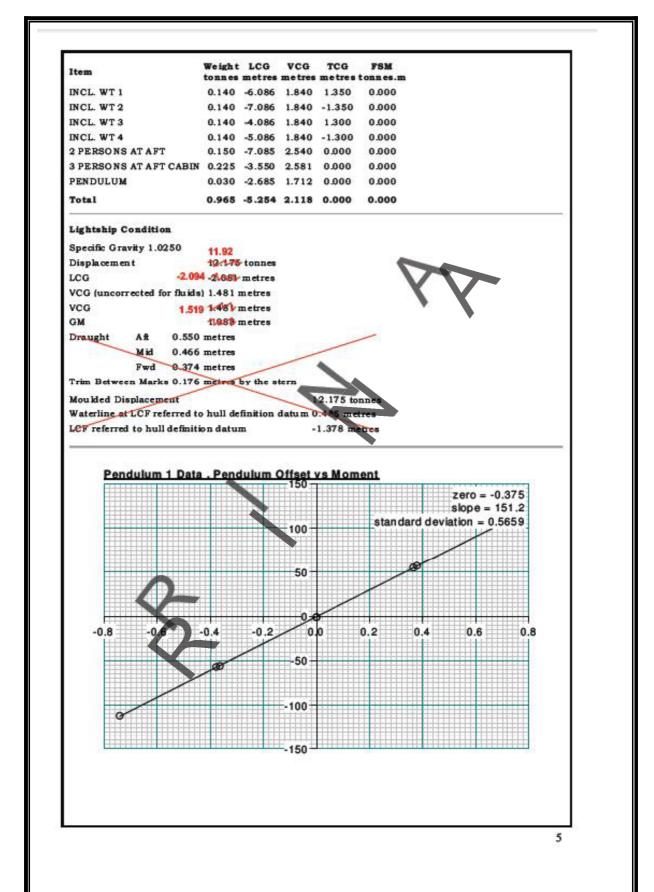
0.474 014819-m

ALL TANKS EMPTY

DRAFT TIME OF INCLINING


P S Mean Draft Aft (Fr.No. 15) : 0.520 m 0.520 m 0.520 m Draft Aft (Fr.No.15)WRT Baseline 0.608 m 0.608 m 0.608 m Draft Ford (Stem) 0.340 m 0.340 m 0.340 m

Trim by aft on Braft Mark : 0.268 m


:

Sign Convension: Songitudinal Position (LCG, LCB, LCF etc) are measured from Midship (230mm ford of Fr No. 8). Aft of Midship is considered -ve and forward +ve All vertical measurement (VGG, VCB etc) are measured from baseline. Trim Aft + ve Trim Ford -ve. TCG are measured wrt Centerline Port -ve Stbd +ve.

2

Inclining Experiment Results SHM - XX Mean Shell Thickness 0.0000 metres Longitudinal Datum 230mm FORD OF FR NO.8 (7.523MTRS FROM TRANSOM) Vertical Datum BASELINE Trim Length 12.968 metres Draught Marks Name X metres Z metres Aft Marks FR. NO. 15 -6.185 0.000 Mid Marks Midships 0.000 0.000 Fwd Marks STEM 6.783 0.000 No. Direction Weight Distance Deflection Rate P1, tonnes metres P1, mm Deflection/Moment 1 Starboard 0.1400 2.7000 57.0 150.794 2 Starboard 0.1400 2.6000 55.0 151.099 3 Port 0.1400 2.7000 57.0 150.794 4 Port 0.1400 2.6000 56.0 153.846 5 Port 0.1400 2.7000 56.0 148,148 0.1400 2.6000 55.0 151.099 6 Port 7 Starboard 0.1400 2.7000 56.0 148.148 8 Starboard 0.1400 2.6000 55.0 Pendulum Data No. Position Length GM metres metres 1 FR NO. 11 3.425 1.724 Draught readings No. Position X Value Draught metres metres 1 FR NO. 15 -6.185 0.608 2 STEM 6.783 0.340 As Inclined Condition Displacement 4 12.88 13:140 tonnes LCG 2.331 2.314 metres VCG 4 1.528 metres KMT 3.152 metres GMT 1.724 metres 5 2:338 metres LCB VCB 0.347 metres Specific Gravity at Inclining 1.0200 Mid Marks Draught 0.480 metres Trim Between Marks 0.268 metres by the stern Items to be added to calculate lightship None to be added Items to be removed to calculate lightship

Hydrostatics Report

SHM - XX

0.500

Ship Particulars

Waterline Length 14.390 metres
Waterline Beam 3.434 metres
Top of Keel 0.000 metres

CP and CM referred to Section SHM - XX, FR NO. 15: X=0 metres

40.070

Specific Gravity of Water 1.0200

Mean Shell Thickness 0.0000 metres

Longitudinal Datum 230mm FORD OF FR NO.8 (7.523MTRS FROM TRANSOM)

 Vertical Datum
 BASELINE

 Trim Length
 12.968 metres

 Draught Marks
 Name
 X metres Z metres

 Aft Marks
 FR. NO. 15
 -6.185
 0.000

 Mid Marks
 Midships
 0.000
 0.000

 Fwd Marks
 S TEM
 6.783
 0.000

Trim Betwe	een Marks	0.268 metres	by the stern			97		
Draught at	M oul de d	Moulded	Full	LCB	LCF	M ou lde d	Immersion	WSA
Mid Marks	Draught	Displacement	Displacement	t		VCB		
metres	metres	tonnes	tonnes	metres	metres	metres	tonnes/cm	m etres
0.450	0.450	11.876	11.876	2.430	-1.518	0.331	0.415	46.08
0.460	0.460	12.292	12.292	-2.399	-1.491	0.336	0.417	46.50
0.470	0.470	12.711	12.711	2.368	-1.462	0.341	0.420	46.95
0.480	0.480	13.140	13.140	2.338	-1.430	0.347	0.423	47.44
0.490	0.490	13.556	13.556	-2.310	-1.408	0.352	0.425	47.83
0.500	0.500	13.982	13.982	-2.282	-1.386	0.357	0.427	48.22
Trim Betwe	en Marks	0.268 metres	by the stern					
Draught at	Moulde	d Moulded	MCT					
Mid Marks	100000000000000000000000000000000000000		tonnes-	СВ		CP	CM	CW
metres	metre	s metres	metres/cm					
0.450	3.465	44.069	0.404	0.52	4	0.841	0.623	0.824
0.460	3.385	43.169	0.409	0.53	0	0.840	0.631	0.828
0.470	3.312	42.378	0:415	0.53	7	0.840	0.639	0.833
0.480	3.252	41.654	0.422	0.54	3	0.840	0.646	0.839
0.490	3.185	40.849	0.427	0.54	9	0.840	0.653	0.843

0.432

0.555

0.840

0.660

0.847